问题 解答题

数列{an}:a1=1,a2=3,a3=2,an+2=an+1-an,求S2002

答案

设S2002=a1+a2+a3+…+a2002

由a1=1,a2=3,a3=2,an+2=an+1-an

可得a4=-1,a5=-3,a6=-2,a7=1,a8=3,a9=2,a10=-1,a11=-3,a12=-2,…a6k+1=1,

即a6k+2=3,a6k+3=2,a6k+4=-1,a6k+5=-3,a6k+6=-2

∵a6k+1+a6k+2+a6k+3+a6k+4+a6k+5+a6k+6=0(找特殊性质项)

∴S2002=a1+a2+a3+…+a2002

=(a1+a2+a3+…a6)+(a7+a8+…a12)+…+(a6k+1+a6k+2+…+a6k+6)+…+(a1993+a1994+…+a1998)+a1999+a2000+a2001+a2002

=a1999+a2000+a2001+a2002

=a6k+1+a6k+2+a6k+3+a6k+4

=5

单项选择题
单项选择题