已知数列{an} 中,a1=2,an-an-1-2n=0(n≥2,n∈N). (1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式; (2)设bn=
|
(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N),
∴a2=6,a3=12.…(2分)
当n≥2时,an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-1+an-2)+(an-an-1)
=2[1+2+3+…(n-1)+n]
=2×
=n(n+1).…(5分)n(n+1) 2
当n=1时,a1=1×(1+1)=2也满足上式,…(6分)
∴数列{an}的通项公式为an=n(n+1).…(7分)
(2)bn=
+1 an+1
+…+1 an+2 1 a2n
=
+1 (n+1)(n+2)
+…+1 (a+2)(a+3) 1 2n(2n+1)
=
-1 (n+1)
+1 (n+2)
-1 (n+2)
+…+1 (n+3)
-1 2n 1 2n+1
=
-1 (n+1) 1 (2n+1)
=n 2n2+3n+1
=
.…(10分)1 (2n+
)+31 n
令f(x)=2x+
(x≥1),1 x
则f′(x)=2-
,当x≥1时,f′(x)>0恒成立,1 x2
∴f(x)在x∈[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3.…(13分)
即当n=1时,(bn)max=
.…(14分)1 6