设指数函数f(x)=ax,(a>0且a≠1),对于任意x,y∈R,下列算式中: ①f(x+y)=f(x)•f(y) ②f(xy)=f(x)+f(y) ③f(x-y)=
④f(nx)=fn(x) ⑤f[(xy)n]=fn(x)•fn(y) 其中不正确的是______.(只需填上所有不正确的题号) |
①f(x+y)=f(x)•f(y)是正确的,因为f(x+y)=ax+y=ax×ay=f(x)•f(y);
②f(xy)=f(x)+f(y)是不正确的,因为f(xy)=axy≠ax+ay=f(x)+f(y);
③f(x-y)=
是正确的,因为f(x-y)=ax-y=f(x) f(y)
=ax ay
;f(x) f(y)
④f(nx)=fn(x)是正确的,因为f(nx)=anx=(ax)n=fn(x);
⑤f[(xy)n]=fn(x)•fn(y)是不正确的,因为f[(xy)n]=a(xy)n=axn×ayn≠(ax)n(ay)n=fn(x)•fn(y)
综上,不正确的是②⑤
故答案为②⑤