问题
解答题
已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=
(1)当x∈N+时,求f(n)的表达式; (2)设an=nf(n)
(3)设bn=
|
答案
(1)由题设得:f(n+1)=f(n)•f(1)=
f(n).1 2
∴数列{f(n)}是以 f(1)=
为首项,1 2
为公比的等比数列.1 2
f(n)=
×(1 2
)n-1=(1 2
)n.(4分)1 2
(2)设Tn=a1+a2+…+an
∵an=n•f(n)=n•(
)n(n∈N*).1 2
∴Tn=1×
+2×(1 2
)2+3×(1 2
)3++n×(1 2
)n1 2
Tn1 2
=1×(
)2+2×(1 2
)3++(n-1)×(1 2
)n+n×(1 2
)n+11 2
两式相减得:
Tn=1 2
+(1 2
)2+(1 2
)3++(1 2
)n-n×(1 2
)n+11 2
=
-n×(
×(1-1 2
)1 2n 1- 1 2
)n+1=1-1 2
.n+2 2n+1
∴Tn=2-
<2.(10分)n+2 2n
(3)∵bn=
=nf(n+1) f(n)
=n•(
)n+11 2 (
)n1 2
n,1 2
∴Sn=
(1+2+3+…+n)1 2
=
×1 2
(n+1)n 2
=
.n(n+1) 4