问题
解答题
已知等差数列{an},公差d>0,前n项和为Sn,S3=6,且满足a3-a1,2a2,a8成等比数列. (Ⅰ)求{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)由S3=6,a3-a1,2a2,a8成等比数列,得
,即3a1+3d=6 4(a1+d)2=2d(a1+7d)
,a1+d=2 2a12+3a1d-5d2=0
解得:
或a1= 10 3 d=- 4 3
.a1=1 d=1
∵d>0,
∴
.a1=1 d=1
∴an=a1+(n-1)d=1+1×(n-1)=n;
(Ⅱ)bn=
=1 an•an+2
=1 n(n+2)
(1 2
-1 n
).1 n+2
∴Tn=b1+b2+…+bn=
(1-1 2
+1 3
-1 2
+1 4
-1 3
+…+1 5
-1 n
)1 n+2
=
(1+1 2
-1 2
-1 n+1
)=1 n+2
-3 4
-1 2(n+1)
.1 2(n+2)