问题 解答题
已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a1=1,an=f(bn)=g(bn+1)(n∈N*),cn=
1
[
1
2
f(n)+
1
2
][g(n)+3]

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{cn}的前n项和Tn,并求使得Tn
m
150
对任意n∈N*都成立的最大正整数m;
(Ⅲ)求证:
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
1
3
答案

(Ⅰ)由题意an+1=4bn+1+1,an=2bn+1

∴an+1=2an+1,(2分)

∴an+1+1=2(an+1),

∵a1=1,

∴数列{an+1}是首项为2,公比为2的等比数列.(4分)

∴.an+1=2×2n-1

∴an=2n-1.(5分)

(Ⅱ)∵cn=

1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
),(7分)

Tn=

1
2
(
1
3
-
1
5
+
1
5
-
1
7
++
1
2n+1
-
1
2n+3
)=
1
2
(
1
3
-
1
2n+3
)=
n
3×(2n+3)
=
n
6n+9
.(8分)

Tn+1
Tn
=
n+1
6n+15
6n+9
n
=
6n2+15n+9
6n2+15n
>1,

∴Tn<Tn+1,n∈N*

∴当n=1时,Tn取得最小值

1
15
.(10分)

由题意得

1
15
m
150
,得m<10.

∵m∈Z,

∴由题意得m=9.(11分)

(Ⅲ)证明:

ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
2k+2k-2
1
2
-
1
3
1
2k

k=1,2,3,,n(12分)

a1
a2
+
a2
a3
++
an
an+1
n
2
-
1
3
(
1
2
+
1
22
++
1
2n
)=
n
2
-
1
3
(1-
1
2n
).

a1
a2
+
a2
a3
++
an
an+1
n
2
-
1
3
(n∈N*).(14分)

名词解释
单项选择题