问题
解答题
已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a1=1,an=f(bn)=g(bn+1)(n∈N*),cn=
(Ⅰ)求数列{an}的通项公式; (Ⅱ)求数列{cn}的前n项和Tn,并求使得Tn>
(Ⅲ)求证:
|
答案
(Ⅰ)由题意an+1=4bn+1+1,an=2bn+1,
∴an+1=2an+1,(2分)
∴an+1+1=2(an+1),
∵a1=1,
∴数列{an+1}是首项为2,公比为2的等比数列.(4分)
∴.an+1=2×2n-1
∴an=2n-1.(5分)
(Ⅱ)∵cn=
=1 (2n+1)(2n+3)
(1 2
-1 2n+1
),(7分)1 2n+3
∴Tn=
(1 2
-1 3
+1 5
-1 5
++1 7
-1 2n+1
)=1 2n+3
(1 2
-1 3
)=1 2n+3
=n 3×(2n+3)
.(8分)n 6n+9
∵
=Tn+1 Tn
•n+1 6n+15
=6n+9 n
>1,6n2+15n+9 6n2+15n
∴Tn<Tn+1,n∈N*.
∴当n=1时,Tn取得最小值
.(10分)1 15
由题意得
>1 15
,得m<10.m 150
∵m∈Z,
∴由题意得m=9.(11分)
(Ⅲ)证明:
∵
=ak ak+1
=2k-1 2k+1-1
-1 2
=1 2(2k+1-1)
-1 2
≥1 3×2k+2k-2
-1 2
•1 3
,1 2k
k=1,2,3,,n(12分)
∴
+a1 a2
++a2 a3
≥an an+1
-n 2
(1 3
+1 2
++1 22
)=1 2n
-n 2
(1-1 3
).1 2n
∴
+a1 a2
++a2 a3
>an an+1
-n 2
(n∈N*).(14分)1 3