问题
解答题
已知各项都不为零的数列{an}的前n项和为Sn,且Sn=
(1)求数列{an}的通项公式; (2)求证:
|
答案
(1)∵Sn=
anan+1,①1 2
∴Sn-1=
an-1an(n≥2),②1 2
①-②得an=Sn-Sn-1=
(an+1-an-1)an1 2
∵an≠0,∴an+1-an-1=2.
数列{an}的奇数项组成首项为a1=1,公差为2的等差数列;偶数项组成首项为a2,公差为2的等差数列.
∵a1=1,∴a2=
=2,S1
a11 2
∴a2n-1=1+(n-1)×2=2n-1,a2n=2+(n-1)×2=2n.
∴数列{an}的通项公式为an=n.(n∈N*);
(2)证明:当n≥3时,
=1 an2
<1 n2
=1 (n-1)n
-1 (n-1)
,则1 n
+1 a12
+1 a22
+…+1 a32
=1 an2
+1 12
+1 22
+…+1 32
<1+1 n2
+(1 4
-1 2
)+(1 3
-1 3
)+…+1 4
-1 (n-1) 1 n =
-7 4
<1 n 7 4
当n=1时,
=1<1 a12
; 当n=2时,7 4
+1 a12
=1 a22
<5 4
;7 4
∴
+1 a12
+1 a22
+…+1 a32
<1 an2
.7 4