问题
填空题
满足(n2-n-1)n+2=1的整数n有______个.
答案
根据题意得:(1)
,n+2=0 n2-n-1≠0
解方程得:n=-2,
(2)n2-n-1=1,即(n-2)(n+1)=0,
可得n-2=0或n+1=0,
解得:n=-1,n=2,
(3)n2-n-1=-1,且n+2为偶数,
即n(n-1)=0,
解得:n=0或n=1,
∴n=0.
∴满足(n2-n-1)n+2=1的整数n有-2,-1,2,0.
故答案为4个.