问题
解答题
设数列{an}的前n项和为Sn=2an-2n (Ⅰ)求a1,a2 (Ⅱ)设cn=an+1-2an,证明:数列{cn}是等比数列 (Ⅲ)求数列{
|
答案
(Ⅰ)∵a1=S1,2a1=S1+2,
∴a1=2,S1=2,
由2an=Sn+2n知,2an+1=Sn+1+2n+1=an+1+Sn+2n+1
得an+1=sn+2n+1①,
∴a2=S1+22=2+22=6;
(Ⅱ)由题设和①式知an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n,
即cn=2n,
∴
=2(常数),cn+1 cn
∴{cn}是首项为2,公比为2的等比数列.
(Ⅲ)∵cn=an+1-2an=2n,
∴
=n+1 2cn
,n+1 2n+1
∴数列{
}的前n项和Tn=n+1 2cn
+2 22
+3 23
+…+4 24
,n+1 2n+1
Tn=1 2
++2 23
+…+4 24
+n 2n+1
,n+1 2n-2
相减得
Tn=1 2
+2 22
+1 23
+1 24
…+1 25
-n 2n+1
=n+1 2n+2
+1 2
-
×(1-1 23
)1 2n-1 1- 1 2
=n+1 2n+2
-3 4
-1 2n+1
,n+1 2n+2
∴Tn=
-3 2
-1 2n
.n+1 2n+1