问题
选择题
数列{an}满足an=
|
答案
∵f(n)=a1+a2+a3+…+a2n-1+a2n
=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)
=[1+3+5+…+(2n-1)]+(a1+a2+…+a2n-1)
=(2n-1)×1+
×2+f(n-1)(2n-1-1)×2n-1 2
=4n-1+f(n-1).
∴f(n)-f(n-1)=4n-1.
当n=2013时,则f(2013)-f(2012)=42012.
故选C.