根据下列条件,判断△ABC与△A′B′C′能相似的有( )对.
(1)∠C=∠C′=90°,∠A=25°,∠B′=65°;
(2)∠C=90°,AC=6cm,BC=4cm,∠C’=90°,A′C′=9,B′C′=6;
(3)AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25;
(4)△ABC与△A′B′C′为等腰三角形,且有一个角为80°
A.1对
B.2对
C.3对
D.4对
(1)∵∠C=∠C′=90°,∠A=25°.
∴∠B=65°.
∵∠C=∠C′,∠B=∠B′.
∴△ABC∽△A′B′C′.
(2)∵∠C=90°,AC=6cm,BC=4cm,∠C’=90°,A′C′=9,B′C′=6.
∴AC:BC=A′C′:B′C′,∠C=∠C′.
∴△ABC∽△A′B′C′.
(3)∵AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25.
∴AC:A′C′=BC:B′C′=AB:A′B′.
∴△ABC∽△A′B′C′.
(4)∵没有指明80°的角是顶角还是底角.
∴无法判定两三角形相似.
∴共有3对.
故选C.