问题
解答题
已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),令bn=
(Ⅰ)求数列{an}的通项公式; (Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1, 求证:①对于任意正整数n,都有Tn<
|
答案
(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
即an=an-1+2n-1(n≥3)…(1分)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n-1+2n-2+…+22+2+1+2
=2n+1,n≥3.…(3分)
检验知n=1,2时,结论也成立
故an=2n+1.…(4分)
(Ⅱ) ①由于bn•2n-1=
•2n-11 (2 n+1)(2n+1 +1)
=
•1 2 (2n+1+1)-(2n+1) (2n+1)(2n+1+1)
=
(1 2
-1 2 n+1
).1 2n+1+1
故Tn=b1+b2•2+b3•22+…+bn•2n-1
=
(1 2
-1 1+2
+1 1+22
-1 1+22
+…+1 1+23
-1 2n+1
)1 2n+1+1
=
(1 2
-1 1+2
)1 2n+1+1
<
-1 2 1 1+2
=
.…(9分)1 6
②若Tn>m,其中m∈(0,
),则有1 6
(1 2
-1 1+2
)>m,1 2n+1+1
则2n+1>
-1,3 1-6m
故n>log2(
-1)-1>0,3 1-6m
取n0=[log2(
-1)-1]+13 1-6m
=[log2(
-1)](其中[x]表示不超过x的最大整数),3 1-6m
则当n>n0时,Tn>m.…(14分)