问题 解答题
已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.
答案

(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),

则f′(x)=2ax+b,

由于f′(x)=6x-2,得

a=3,b=-2,

所以f(x)=3x2-2x.

又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,

所以Sn=3n2-2n.

当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.

当n=1时,a1=S1=3×12-2=6×1-5,

所以,an=6n-5(n∈N*

(Ⅱ)由(Ⅰ)得知bn=

3
anan+1
=
3
(6n-5)(6(n+1)-5)
=
1
2
(
1
6n-5
-
1
6n+1
)

故Tn=

n
i=1
bi=
1
2
[(1-
1
7
)+(
1
7
-
1
13
)+…+(
1
6n-5
-
1
6n+1
)]
=
1
2
(1-
1
6n+1
).

因此,要使

1
2
(1-
1
6n+1
)<
m
20
(n∈N*)成立的m,必须且仅须满足
1
2
m
20
,即m≥10,

所以满足要求的最小正整数m为10.

单项选择题
单项选择题