问题 解答题
已知数列{an}的前n项和Sn,满足:Sn=2an-2n(n∈N*)
(1)求数列{an}的通项an
(2)若数列{bn}的满足bn=log2(an+2),Tn为数列{
bn
an+2
}
的前n项和,求证:Tn
1
2
答案

(1)当n∈N*时,Sn=2an-2n①,则当n≥2时,Sn-1=2an-1-2(n-1)②,

①-②,得an=2an-2an-1-2,即an=2an-1+2,

∴an+2=2(an-1+2),∴

an+2
an-1+2
=2,

当n=1时,S1=2a1-2,则a1=2.

∴{an+2}是以a1+2=4为首项,2为公比的等比数列,

an+2=4•2n-1,∴an=2n+1-2

(2)证明:bn=log2(an+2)=log22n+1=n+1,∴

bn
an+2
=
n+1
2n+1

Tn=

2
22
+
3
23
+…+
n+1
2n+1
③,

1
2
Tn=
2
23
+
3
24
+…+
n
2n+1
+
n+1
2n+2
…④,

③-④,得

1
2
Tn=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2
=
1
2
+
1
23
(1-
1
2n-1
)
1-
1
2
-
n+1
2n+2
=
3
4
-
n+3
2n+2

∴Tn=

3
2
-
n+3
2n+1

当n≥2时,Tn-Tn-1=-

n+3
2n+1
+
n+2
2n
=
n+1
2n+1
>0,

∴{Tn}为递增数列,∴TnT1=

1
2

单项选择题
多项选择题