问题
解答题
已知数列{an}的前n项和Sn,满足:Sn=2an-2n(n∈N*). (1)求数列{an}的通项an; (2)若数列{bn}的满足bn=log2(an+2),Tn为数列{
|
答案
(1)当n∈N*时,Sn=2an-2n①,则当n≥2时,Sn-1=2an-1-2(n-1)②,
①-②,得an=2an-2an-1-2,即an=2an-1+2,
∴an+2=2(an-1+2),∴
=2,an+2 an-1+2
当n=1时,S1=2a1-2,则a1=2.
∴{an+2}是以a1+2=4为首项,2为公比的等比数列,
∴an+2=4•2n-1,∴an=2n+1-2;
(2)证明:bn=log2(an+2)=log22n+1=n+1,∴
=bn an+2
,n+1 2n+1
则Tn=
+2 22
+…+3 23
③,n+1 2n+1
Tn=1 2
+2 23
+…+3 24
+n 2n+1
…④,n+1 2n+2
③-④,得
Tn=1 2
+2 22
+1 23
+…+1 24
-1 2n+1
=n+1 2n+2
+1 2
-
(1-1 23
)1 2n-1 1- 1 2
=n+1 2n+2
-3 4
,n+3 2n+2
∴Tn=
-3 2
.n+3 2n+1
当n≥2时,Tn-Tn-1=-
+n+3 2n+1
=n+2 2n
>0,n+1 2n+1
∴{Tn}为递增数列,∴Tn≥T1=
.1 2