问题
解答题
已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得
(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,
当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.
∴d=2,
∴an=a1+(n-1)d=2+2(n-1)=2n.
即数列{an}的通项公式an=2n;
(Ⅱ)由an=2n,得
bn=
=2 n•(an+2)
=2 n(2n+2)
=1 n(n+1)
-1 n
,1 n+1
∴Sn=b1+b2+b3+…+bn
=1-
+1 2
-1 2
+1 3
-1 3
+…+1 4
-1 n
=1 n+1
.n n+1