问题 解答题
已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn
答案

(Ⅰ)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得

(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,

当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.

∴d=2,

∴an=a1+(n-1)d=2+2(n-1)=2n.

即数列{an}的通项公式an=2n;

(Ⅱ)由an=2n,得

bn=

2
n•(an+2)
=
2
n(2n+2)
=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=b1+b2+b3+…+bn

=1-

1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=
n
n+1

单项选择题
单项选择题