在等差数列是{an}中,已知a4与a2与a8的等比中项,a3+2是a2与a6的等差中项,Sn是前n项和,则满足
|
设等差数列是{an}的公差为d,由a4是a2与a8的等比中项,得(a1+3d)2=(a1+d)(a1+7d),化简得a1d=d2①,
由a3+2是a2与a6的等差中项,得2(a1+2d+2)=(a1+d)+(a1+5d),解得d=2,代入①得a1=d=2.
所以an=a1+(n-1)•d=2n,
则Sn=
=n(n+1),n(2+2n) 2
所以
=1 Sn
=1 n(n+1)
-1 n
,1 n+1
则
+1 S1
+1 S2
+…+1 S3
=1-1 Sn
+1 2
-1 2
+1 3
-1 3
+…+1 4
-1 n
=1-1 n+1
,1 n+1
由已知得
<1-9 11
<1 n+1
,解得19 21
<n<9 2
,19 2
又n∈Z,所以n=5,6,7,8,9,且5+6+7+8+9=35,
故答案为:35.