问题 选择题

设数列{an}的前n项和为Sn=10n-n2,则|a1|+|a2|+…+|a15|等于(  )

A.150

B.135

C.125

D.100

答案

根据an=

S1,n=1
Sn-Sn-1,n≥2
,得

当n≥2时,an=Sn-Sn-1=-n2+10n-[-(n-1)2+10(n-1)]=-2n+11,

当n=1时,S1=a1=9也适合上式,

∴an=-2n+11,

据通项公式得a1>a2>…>a5>0>a6>a7>…>a15

∴|a1|+|a2|+…+|a15|

=(a1+a2+…+a5)-(a6+a7+…+a15

=2S5-S15

=2×(10×5-52)-(10×15-152

=50+75

=125.

故选C.

单项选择题
选择题