问题
选择题
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx满足f′(
|
答案
∵f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx,
∴f′(x)|x=
=an-an+1+an+2-an+1•sinx|x=π 2
-an+2cosx|x=π 2
,π 2
=an-2an+1+an+2,
∵f′(
)=0,π 2
∴an-2an+1+an+2=0,即2an+1=an+an+2,
∴数列{an}是等差数列,设其公差为d,
∵a2+a4=6,
∴2a1+4d=6,a1=1,
∴d=1,
∴an=1+(n-1)×1=n,
∴cn=an+
=n+1 2an
,1 2n
∴Sn=c1+c2+…+cn
=(1+2+…+n)+(
+1 2
+…+1 22
)1 2n
=
+(1+n)n 2
[1-(1 2
)n]1 2 1- 1 2
=
-n2+n+2 2
.1 2n
故选:C.