问题 选择题
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A.
n2+n
2
-
1
2n
B.
n2+n+4
2
-
1
2n-1
C.
n2+n+2
2
-
1
2n
D.
n2+n+4
2
-
1
2n
答案

∵f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx,

∴f′(x)|x=

π
2
=an-an+1+an+2-an+1•sinx|x=
π
2
-an+2cosx|x=
π
2

=an-2an+1+an+2

∵f′(

π
2
)=0,

∴an-2an+1+an+2=0,即2an+1=an+an+2

∴数列{an}是等差数列,设其公差为d,

∵a2+a4=6,

∴2a1+4d=6,a1=1,

∴d=1,

∴an=1+(n-1)×1=n,

∴cn=an+

1
2an
=n+
1
2n

∴Sn=c1+c2+…+cn

=(1+2+…+n)+(

1
2
+
1
22
+…+
1
2n

=

(1+n)n
2
+
1
2
[1-(
1
2
)
n
]
1-
1
2

=

n2+n+2
2
-
1
2n

故选:C.

单项选择题
判断题