问题
解答题
已知数列{an}的前n项和为Sn,首项a1=1,且对于任意n∈N+都有nan+1=2Sn. (Ⅰ)求{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)解法一:由nan+1=2Sn①
得当n≥2时,(n-1)an=2Sn-1②,
由①-②可得,nan+1-(n-1)an=2(Sn-Sn-1)=2an,
所以nan+1=(n+1)an,
即当n≥2时,
=an+1 an
,n+1 n
所以
=a3 a2
,3 2
=a4 a3
,4 3
=a5 a4
,…,5 4
=an an-1
,n n-1
将上面各式两边分别相乘得,
=an a2
,n 2
即an=
•a2(n≥3),n 2
又a2=2S1=2a1=2,所以an=n(n≥3),
此结果也满足a1,a2,
故an=n对任意n∈N+都成立.…(7分)
解法二:由nan+1=2Sn及an+1=Sn+1-Sn,
得nSn+1=(n+2)Sn,
即
=Sn+1 Sn
,n+2 n
∴当n≥2时,Sn=S1•
•S2 S1
•…•S3 S2
=1×Sn Sn-1
×3 1
×4 2
×…×5 3
=n+1 n-1
(此式也适合S1),n(n+1) 2
∴对任意正整数n均有Sn=
,n(n+1) 2
∴当n≥2时,an=Sn-Sn-1=n(此式也适合a1),
故an=n.…(7分)
(Ⅱ)依题意可得bn=
=4an+1 an2an+22
=4n+4 n2(n+2)2
-1 n2 1 (n+2)2
Tn=
-1 12
+1 32
-1 22
+1 42
-1 32
+…+1 52
-1 n2 1 (n+2)2 =1+
-1 4
-1 (n+1)2 1 (n+2)2 =
-5 4
<(n+1)2+(n+2)2 (n+1)2(n+2)2 5 4
∴Tn<
.…(13分)5 4