问题 解答题
已知数列{an}的前n项和为Sn,首项a1=1,且对于任意n∈N+都有nan+1=2Sn
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
4an+1
an2an+22
,且数列{bn}的前n项之和为Tn,求证:Tn
5
4
答案

(Ⅰ)解法一:由nan+1=2Sn

得当n≥2时,(n-1)an=2Sn-1②,

由①-②可得,nan+1-(n-1)an=2(Sn-Sn-1)=2an

所以nan+1=(n+1)an

即当n≥2时,

an+1
an
=
n+1
n

所以

a3
a2
=
3
2
a4
a3
=
4
3
a5
a4
=
5
4
,…,
an
an-1
=
n
n-1

将上面各式两边分别相乘得,

an
a2
=
n
2

an=

n
2
a2(n≥3),

又a2=2S1=2a1=2,所以an=n(n≥3),

此结果也满足a1,a2

故an=n对任意n∈N+都成立.…(7分)

解法二:由nan+1=2Sn及an+1=Sn+1-Sn

得nSn+1=(n+2)Sn

Sn+1
Sn
=
n+2
n

∴当n≥2时,Sn=S1

S2
S1
S3
S2
•…•
Sn
Sn-1
=1×
3
1
×
4
2
×
5
3
×…×
n+1
n-1
=
n(n+1)
2
(此式也适合S1),

∴对任意正整数n均有Sn=

n(n+1)
2

∴当n≥2时,an=Sn-Sn-1=n(此式也适合a1),

故an=n.…(7分)

(Ⅱ)依题意可得bn=

4an+1
an2an+22
=
4n+4
n2(n+2)2
=
1
n2
-
1
(n+2)2

Tn=
1
12
-
1
32
+
1
22
-
1
42
+
1
32
-
1
52
+…+
1
n2
-
1
(n+2)2
=1+
1
4
-
1
(n+1)2
-
1
(n+2)2
=
5
4
-
(n+1)2+(n+2)2
(n+1)2(n+2)2
5
4

Tn

5
4
.…(13分)

单项选择题
单项选择题