问题 解答题

已知数列{an}是等差数列,且a2=7,a5=16,数列{bn}是各项为正数的数列,且b1=2,点(log2bn,log2bn+1)在直线y=x+1上.

(1)求{an}、{bn}的通项公式;

(2)设cn=anbn,求数列{cn}的前n项的和Sn

答案

(1)∵数列{an}是等差数列,且a2=7,a5=16,

7=a1+d
16=a1+4d
,∴a1=4,d=3,∴an=3n+1(3分)

又点(log2bn,log2bn+1)在直线y=x+1上,∴log2bn+1=log2bn+1,

∴log2bn+1-log2bn=1,log2

bn+1
bn
=1,bn+1=2bn,又b1=2,∴bn=2n(6分)

(2)由cn=anbn得cn=(3n+1)2n(7分)

∴Sn=4×2+7×22++(3n+1)2n

2Sn=4×22+7×23++(3n+1)2n+1

①-②得-Sn=4×2+3×22++3×2n-(3n+1)2n+1(11分)

∴-Sn=8+3×22(2n-1-1)-(3n+1)2n+1=-4-(3n-2)2n+1

∴Sn=4+(3n-2)2n+1(13分)

判断题
多项选择题