问题
解答题
已知数列{an}是等差数列,且a2=7,a5=16,数列{bn}是各项为正数的数列,且b1=2,点(log2bn,log2bn+1)在直线y=x+1上.
(1)求{an}、{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项的和Sn.
答案
(1)∵数列{an}是等差数列,且a2=7,a5=16,
∴
,∴a1=4,d=3,∴an=3n+1(3分)7=a1+d 16=a1+4d
又点(log2bn,log2bn+1)在直线y=x+1上,∴log2bn+1=log2bn+1,
∴log2bn+1-log2bn=1,log2
=1,bn+1=2bn,又b1=2,∴bn=2n(6分)bn+1 bn
(2)由cn=anbn得cn=(3n+1)2n(7分)
∴Sn=4×2+7×22++(3n+1)2n①
2Sn=4×22+7×23++(3n+1)2n+1②
①-②得-Sn=4×2+3×22++3×2n-(3n+1)2n+1(11分)
∴-Sn=8+3×22(2n-1-1)-(3n+1)2n+1=-4-(3n-2)2n+1
∴Sn=4+(3n-2)2n+1(13分)