已知数列{an}的前n项和为Sn,且曲线y=x2-nx+1(n∈N*)在x=an处的切线的斜率恰好为Sn. (1)求数列{an}的通项公式; (2)求数列{nan}的前n项和为Tn; (3)求证:
|
(1)y’=2x-n,由导数的几何意义,得Sn=2an-n①,(1分)则Sn+1=2an+1-(n+1)②,
②一④得:an+l=2an+1-2an-1,即an+1=2an+l,(2分)故an+1=2(an+1).(3分)
由①知,al=S1=2a1-1,得a1=1.(4分)
∴{an+1}是首项为2,公比为2的等比数列,
∴an+l=2n,即an=2n-l(n∈N*).(5分)
(2)由(1)知,nan=n(2n-1)=n•2n-n,则Tn=(1•2+2•22+3•23++n•2n)-(1+2+3++n)=An-
,其中An=1•2+2•22+3•23++n•2n,①2An=1•22+2•23++(n-1)•2n+n•2n+1,②n(n+1) 2
①一②得:-An=2+22+23++2n-n•2n+1=
-n•2n+1=2n+1-2-n•2n+12(1-2n) 1-2
∴An=(n-1)2n+1+2(8分)故Tn=(n-1)2n+1+2-
(9分)n(n+1) 2
(3)∵
=1 an
=1 2n-1
<2n+1-1 (2n-1)(2n+1-1)
=2•2n+1 (2n-1)(2n+1-1)
=2((2n+1-1)-(2n-1) (2n-1)(2n+1-1)
-1 2n-1
)(n≥2)(12分)∴1 2n+1-1
+1 a1
+1 a2
++1 a3
<1+2[(1 an
-1 22-1
)+(1 23-1
-1 23-1
)++(1 24-1
-1. 2n-1
)]=1+2(1 2n+1-1
-1 22-1
)<1+2•1 2n+1-1
=1 3
(l4分)5 3