问题 解答题
已知数列{an}的前n项和为Sn,且曲线y=x2-nx+1(n∈N*)在x=an处的切线的斜率恰好为Sn
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和为Tn
(3)求证:
1
a1
+
1
a2
+
1
a3
+…
1
an
5
3
答案

(1)y’=2x-n,由导数的几何意义,得Sn=2an-n①,(1分)则Sn+1=2an+1-(n+1)②,

②一④得:an+l=2an+1-2an-1,即an+1=2an+l,(2分)故an+1=2(an+1).(3分)

由①知,al=S1=2a1-1,得a1=1.(4分)

∴{an+1}是首项为2,公比为2的等比数列,

∴an+l=2n,即an=2n-l(n∈N*).(5分)

(2)由(1)知,nan=n(2n-1)=n•2n-n,则Tn=(1•2+2•22+3•23++n•2n)-(1+2+3++n)=An-

n(n+1)
2
,其中An=1•2+2•22+3•23++n•2n,①2An=1•22+2•23++(n-1)•2n+n•2n+1,②

①一②得:-An=2+22+23++2n-n•2n+1=

2(1-2n)
1-2
-n•2n+1=2n+1-2-n•2n+1

∴An=(n-1)2n+1+2(8分)故Tn=(n-1)2n+1+2-

n(n+1)
2
(9分)

(3)∵

1
an
=
1
2n-1
=
2n+1-1
(2n-1)(2n+1-1)
2n+1
(2n-1)(2n+1-1)
=2•
(2n+1-1)-(2n-1)
(2n-1)(2n+1-1)
=2(
1
2n-1
-
1
2n+1-1
)(n≥2)
(12分)∴
1
a1
+
1
a2
+
1
a3
++
1
an
<1+2[(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)++(
1.
2n-1
-
1
2n+1-1
)]
=1+2(
1
22-1
-
1
2n+1-1
)<1+2•
1
3
=
5
3
(l4分)

单项选择题
单项选择题