问题 选择题

已知数列{an}满足an+1=a1-an-1(n≥2),a1=a,a2=b,设Sn=a1+a2+…+an,则下列结论正确的是(  )

A.a100=a-b,S100=50(a-b)

B.a100=a-b,S100=50a

C.a100=-b,S100=50a

D.a100=-a,S100=b-a

答案

∵an+1=a1-an-1(n≥2),a1=a,a2=b,

∴a3=a1-a1=0,

a4=a1-a2=a-b,

a5=a1-a3=a,

a6=a1-a4=a-(a-b)=b,

∴{an}是以4为周期的周期函数,

∵100=4×25,

∴a100=a4=a-b,

S100=25(a+b+0+a-b)=50a.

故选B.

单项选择题 A1/A2型题
问答题 简答题