问题
选择题
已知数列{an}满足an+1=a1-an-1(n≥2),a1=a,a2=b,设Sn=a1+a2+…+an,则下列结论正确的是( )
A.a100=a-b,S100=50(a-b)
B.a100=a-b,S100=50a
C.a100=-b,S100=50a
D.a100=-a,S100=b-a
答案
∵an+1=a1-an-1(n≥2),a1=a,a2=b,
∴a3=a1-a1=0,
a4=a1-a2=a-b,
a5=a1-a3=a,
a6=a1-a4=a-(a-b)=b,
∴{an}是以4为周期的周期函数,
∵100=4×25,
∴a100=a4=a-b,
S100=25(a+b+0+a-b)=50a.
故选B.