问题 解答题
数列{an}的前n项和为Sn,且Sn=
3
2
(an-l),数列{bn}满足bn=
1
4
bn-1-
3
4
(n≥2),b1=3.
(1)求数列{an}与{bn}的通项公式.
(2)设数列{cn} 满足cn=anlog2(bn+1),其前n项和为Tn,求Tn
答案

(1)对于数列{an},当n=1时,a1=S1=

3
2
(a1-1),解得a1=3.

当n≥2时,an=Sn-Sn-1=

3
2
(an-1)-
3
2
(an-1-1),化为an=3an-1

∴数列{an}是首项为3,公比为3的等比数列,

an=3×3n-1=3n

对于数列{bn}满足bn=

1
4
bn-1-
3
4
(n≥2),b1=3.

可得bn+1=

1
4
(bn-1+1).

∴数列{bn+1}是以b1+1=4为首项,

1
4
为公比的等比数列.

bn+1=4×(

1
4
)n-1,化为bn=42-n-1

(2)cn=3n•lo

g(42-n-1+1)2
=3n(4-2n)

Tn=2×31+0+(-2)•33+…+(4-2n)•3n

3Tn=2×32+0+(-2)×34+…+(6-2n)•3n+(4-2n)•3n+1

-2Tn=6+(-2)•32+(-2)•33+…+(-2)•3n-(4-2n)•3n+1

=6-2×

32(3n-1-1)
3-1
-(4-2n)•3n+1

Tn=-

15
2
+(
5
2
-n)•3n+1

单项选择题
单项选择题