问题
解答题
已知数列{an}的前n项和为Sn,且Sn=1-an(n∈N*). (1)试求{an}的通项公式; (2)若bn=
|
答案
(1)n=1时,a1=1-a1,a1=
,1 2
∵Sn=1-an(n∈N*)①,∴Sn+1=1-an+1②,
②-①得an+1=-an+1+a n,∴an+1=
a n,1 2
∴数列{an}是首项为a1=
,公比q=1 2
的等比数列,1 2
∴an=
•(1 2
)n-1=(1 2
)n1 2
(2)bn=
=n•2n(n∈N*)n an
∴Tn=1×2+2×22+3×23+…+n×2n,③
2Tn=1×22+2×23+3+3×23+…+n×2n+1,④
③-④得,-Tn=2+22+23+…+2n-n×2 n+1③,
=
-n×2 n+1③,2(1-2n) 1-2
整理得Tn=(n-1)2 n+1+2