已知等差数列前三项为a,4,3a,前n项的和为sn,sk=2550. (1)求a及k的值; (2)求
|
(1)设该等差数列为{an},则a1=a,a2=4,a3=3a,
由已知有a+3a=2×4,解得a1=a=2,公差d=a2-a1=4-2=2,
将sk=2550代入公式sk=ka1+
•d,k(k-1) 2
得,2k+
×2=2550,解得:k=50,k=-51(舍去),k(k-1) 2
∴a=2,k=50;
(2)由sn=n•a1+
•d,得sn=2n+n(n-1) 2
×2=n(n+1),n(n-1) 2
∴
=1 sn
=1 n(n+1)
-1 n
,1 n+1
则
+1 s1
+…+1 s2 1 sn
=
+1 1×2
+…+1 2×3 1 n(n+1)
=(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)1 n+1
=1-1 n+1
=
.n n+1