问题 解答题
已知等差数列前三项为a,4,3a,前n项的和为sn,sk=2550.
(1)求a及k的值;
(2)求
1
s1
+
1
s2
+…+
1
sn
答案

(1)设该等差数列为{an},则a1=a,a2=4,a3=3a,

由已知有a+3a=2×4,解得a1=a=2,公差d=a2-a1=4-2=2,

将sk=2550代入公式sk=ka1+

k(k-1)
2
•d,

得,2k+

k(k-1)
2
×2=2550,解得:k=50,k=-51(舍去),

∴a=2,k=50;

(2)由sn=n•a1+

n(n-1)
2
•d,得sn=2n+
n(n-1)
2
×2
=n(n+1),

1
sn
=
1
n(n+1)
=
1
n
-
1
n+1

1
s1
+
1
s2
+…+
1
sn

=

1
1×2
+
1
2×3
+…+
1
n(n+1)

=(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)

=1-

1
n+1

=

n
n+1

多项选择题
综合