已知n∈N*,设Sn是单调递减的等比数列{an}的前n项和,a1=1,且S2+a2、S4+a4、S3+a3成等差数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)数列x∈(0,+∞)满足b1=2a1,bn+1bn+bn+1-bn=0,求数列f(x)max≤0的通项公式; (Ⅲ)在满足(Ⅱ)的条件下,若cn=
|
( I)设数列{an}的公比为q,由2(S4+a4)=S2+a2+S3+a3,
得(S4-S2)+(S4-S3)+2a4=a2+a3,即4a4=a2,
所以q2=
,1 4
∵{an}是单调数列,
∴q=
,1 2
∴an=(
)n-1.1 2
( II)b1=2,∵bn+1bn+bn+1-bn=0,
∴1+
-1 bn
=0,即1 bn+1
-1 bn+1
=1,1 bn
即{
}是以1 bn
为首项,1为公差的等差数列,1 2
故
=1 bn
+(n-1)×1=1 2
,即bn=2n-1 2
.2 2n-1
( III)∵cn=
=ancos(nπ) bn
cos(nπ)=2n-1 2n
•(-1)n=(2n-1)×(-2n-1 2n
)n,1 2
∴Tn=1×(-
)+3×(-1 2
)2+5×(-1 2
)3+…+(2n-1)×(-1 2
)n,1 2
-
Tn=1×(-1 2
)2+3×(-1 2
)3+…+(2n-3)×(-1 2
)n+(2n-1)×(-1 2
)n+1,1 2
两式相减,得
Tn=1×(-3 2
)+2[(-1 2
)2+(-1 2
)3+…+(-1 2
)n-(2n-1)×(-1 2
)n+1]1 2
=
+2×1 2
-(2n-1)×(--
×[1-(-1 2
)n]1 2 1+ 1 2
)n+11 2
=
-1 2
[1-(-2 3
)n]-(2n-1)×(-1 2
)n+1,1 2
=-
+(n+1 6
)•(-1 6
)n,1 2
即Tn=-
+1 9
(6n+1)(-1 9
)n.1 2