问题
解答题
数列{an}的前n项和为Sn,a1=2,Sn=
(Ⅰ)求a2,a3; (Ⅱ)求数列{an}的通项an; (Ⅲ)求数列{nan}的前n项和Tn. |
答案
(Ⅰ)∵a1=2,Sn=
an+1-1(n∈N*),1 2
∴当n=1时,S1=
a2-1=a1=2,1 2
解得a2=6.
当n=2时,S2=
a3-1=2+6=8,1 2
解得a3=18.
(Ⅱ)∵a1=2,Sn=
an+1-1(n∈N*),1 2
∴当n≥2时,Sn=
an+1-1,Sn-1=1 2
an-1,1 2
∴an=Sn-Sn-1=
an+1-1 2
an,1 2
即an+1=3an.
对于a2=3a1也满足上式,
∴数列{an}是首项为2,公比为3的等比数列,
∴an=2•3n-1(n∈N*).
( III)∵an=2•3n-1(n∈N*),
∴nan=2n•3n-1,
∴Tn=2•1+4•3+6•32+8•33+…+2n•3n-1,
3Tn=2•3+4•32+6•33+8•34+…+2n•3n,
相减得,-2Tn=2(1+3+32+33+…+3n-1)-2n•3n
=2•
-2n•3n1-3n 1-3
=3n-1-2n•3n,
∴Tn=
.(2n-1)•3n+1 2