问题
解答题
设递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,数列{bn}满足b1=a1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*. (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)设cn=
|
答案
(Ⅰ)∵递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,
∴
,a2=3 S3=a1+a2+a3=13
解得q=3或q=
,1 3
∵数列{an}为递增等比数列,所以q=3,a1=1.
∴{an}是首项为1,公比为3的等比数列.
∴an=3n-1.…(3分)
∵点P(bn,bn+1)在直线x-y+2=0上,
∴bn+1-bn=2.
∴数列{bn}是首项为1,公差为2的等差数列.
∴bn=1+(n-1)•2=2n-1.…(5分)
(Ⅱ)∵cn=
=bn an
,2n-1 3n-1
∴Tn=
+1 30
+3 31
+…+5 32
.2n-1 3n-1
Tn=1 3
+1 3
+3 32
+…+5 33
+2n-3 3n-1
,…(7分)2n-1 3n
两式相减得:
Tn=2 3
+1 3
+2 3
+…+2 32
-2 3n-1 2n-1 3n
=1+2×
-
[1-(1 3
)n-1]1 3 1- 1 3 2n-1 3n
=2-(
)n-1-1 3
.…(8分)2n-1 3n
所以Tn=3-
-1 2•3n-2
=3-2n-1 2•3n-1
.…(9分)n+1 3n-1
∵Tn+1-Tn=3-
-3+n+2 3n
=n+1 3n-1
>0,…(10分)2n+1 3n
∴Tn≥T1=1.
若Tn>2a-1恒成立,则1>2a-1,
解得a<1.
∴实数a的取值范围{a|a<1}.…(12分)