问题
解答题
已知数列{an}的前n项和为Sn,Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an+1,求数列{bn}的前n项和Tn.
答案
(Ⅰ)当n=1时,a1=2,
当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2)
即:
=2,∴数列{an}为以2为公比的等比数列,an an-1
∴an=2n.
(Ⅱ)∵bn=2n•log22n+1=(n+1)•2n,
∴Tn=2×2+3×22+…+n•2n-1+(n+1)•2n 2Tn=2×22+3×23+…+n•2n+(n+1)•2n+1
两式相减,得-Tn=4+22+23+…+2n-(n+1)2n+1=-n•2n+1,
∴Tn=n•2n+1.