问题 填空题
Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
(n∈N*),且Sn+1Sn+2=
3
4
,则n的值是______.
答案

1
n(n+1)
=
1
n
-
1
n+1
,∴Sn=(1-
1
2
)+ (
1
2
-
1
3
)
+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1

∴S n+1•Sn+2=

n+1
n+2
n+2
n+3
=
n+1
n+3
=
3
4
,解得n=5

故答案为:5.

单项选择题 B型题
多项选择题 案例分析题