问题
解答题
已知数列{an}满足:a1=a+2(a≥0),an+1=
(1)若a=0,求数列{an}的通项公式; (2)设bn=|an+1-an|,数列的前n项和为Sn,证明:Sn<a1. |
答案
(1)若a=0时,a1=2,an+1=
,an
∴an+12=an且an>0.
两边取对数,得2lgan+1=lgan,
∵lga1=lg2,
∴数列{lgan}是以lg2为首项,
为公比的等比数列,1 2
∴lgan=(
)n-1lg2,即an=221-n;1 2
(2)由an+1=
,得an+12=an+a,①an+a
当n≥2时,
=an-1+a,②a 2n
①-②,得(an+1+an)(an+1-an)=an-an-1,
由已知可得an>0,∴an+1-an与an-an-1同号,
∵a2=
,且a>0,∴2a+2
-a 21
=(a+2)2-(2a+2)=a2+2a+2>0恒成立,a 22
∴a2-a1<0,则an+1-an<0.
∵bn=|an+1-an|,∴bn=-(an+1-an),
∴Sn=-[(a2-a1)+(a3-a2)+…+(an+1-an)]=-(an+1-a1)=a1-an+1<a1.