问题
解答题
已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1) (Ⅰ)求证数列{
(Ⅱ)设bn=anan+1,求证:b1+b2+…+bn<
|
答案
证明:(Ⅰ)an-an-1+2anan-1=0两边同除以anan-1得:
-1 an
=21 an-1
所以数列{
}是以1为首项,2为公差的等差数列…(3分)1 an
于是
=2n-1,an=1 an
,(n∈N*)…(6分)1 2n-1
(Ⅱ)由(Ⅰ),bn=
则1 (2n-1)(2n+1)
b1+b2+…+bn=
+1 1×3
+…+1 3×5 1 (2n-1)(2n+1)
=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)=1 2n+1
(1-1 2
)<1 2n+1
…(12分)1 2