问题
解答题
已知点(1,
(Ⅰ)求数列{an}和{bn}的通项公式 (Ⅱ)求数列{
|
答案
(Ⅰ)∵f(1)=
,故a=1 3
,1 3
∴f(x)=(
)x,1 3
∵a1=f(1)-c=
-c,a2=[f(2)-c]-[f(1)-c]=-1 3
,a3=[f(3)-c]-[f(2)-c]=-2 9
,2 27
又数列{an}为等比数列,a1=
=a22 a3
=-4 81 - 2 27
=2 3
-c,1 3
∴c=1,又公比q=
=a2 a1
,1 3
∴an=-
(2 3
)n-1=-2(1 3
)n,n∈N*;1 3
∵Sn-Sn-1=(
+Sn
)(Sn-1
-Sn
)=Sn-1
+Sn
(n≥2),Sn-1
又bn>0,
>0,Sn
∴
-Sn
=1;Sn-1
∴数列{
}构成一个首相为1公差为1的等差数列,Sn
∴
=1+(n-1)×1=n,于是Sn=n2;Sn
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1;
∴bn=2n-1,n∈N*;
(Ⅱ)∵
=1 bnbn+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
),1 2n+1
∴Tn=
+1 b1b2
+…+1 b2b3 1 bnbn+1
=
[(1-1 2
)+(1 3
-1 3
)+(1 5
-1 5
)+(1 7
-1 7
)+…+(1 9
-1 2n-1
)]1 2n+1
=
(1-1 2
)1 2n+1
=
.n 2n+1