问题
解答题
设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
(1)求证:数列{2nan}为等差数列,并求数列{an}的通项; (2)求数列{Sn}的前n项和Tn. |
答案
(1)当n=1时,s1=-a1+1-
⇒a1=1 2
…(1分),1 4
n≥2时,由Sn-Sn-1=-an+an-1+
,1 2n
得2nan-2n-1an-1=
,1 2
∴数列{2nan}为等差数列,…(3分)
∴2nan=2×a1+(n-1)×
,an=1 2
.…(6分)n 2n+1
(2)由(1)得Sn=1-
,n+2 2n+1
∴Tn=n-(
+3 22
+…+4 23
),①n+2 2n+1
Tn=1 2
n-(1 2
+3 23
+…+4 24
),②n+2 2n+2
①-②得
Tn=1 2
n-(1 2
+3 4
+1 23
+…+1 24
-1 2n+1
)n+2 2n+2
=
n-1 2
-3 4
+
(1-1 8
)1 2n-1 1- 1 2 n+2 2n+2
=
n-1+1 2
+1 2n+1
.…(9分)2n+4 2n+1
∴Tn=n-2+
.…(12分)2n+5 2n