问题
填空题
数列{an}中,a2=2,an,an+1是方程x2-(2n+1)x+
|
答案
∵an,an+1是方程x2-(2n+1)x+
=0的两个根,1 bn
∴an+an+1=2n+1,an•an+1=
,1 bn
∵a2=2,∴a1=2+1-2=1,
∴an-n=-[an+1-(n+1)],
∴an=n
∵an•an+1=
,1 bn
∴bn=
=1 n(n+1)
-1 n
,1 n+1
∴Sn=b1+b2+…+bn
=(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)1 n+1
=1-1 n+1
=
.n n+1
故答案为:
.n n+1