问题
解答题
设数列{an},an≠0,a1=
(1)求证:{an-
(2)求{an}的通项公式并求前n项和Sn. |
答案
(1)∵3(α+β)-αβ+1=0,
∴依题意,得3
-an an-1
=1(n≥2),1 an-1
∴3an-1=an-1(n≥2),
∴3(an-
)=an-1-1 2
(n≥2),1 2
∴{an-
}是公比为1 2
,首项为1 3
-5 6
=1 2
的等比数列;1 3
(2)由(1)知,an-
=1 2
•(1 3
)n-1=(1 3
)n,1 3
∴an=
+(1 2
)n,1 3
∴Sn=a1+a2+…+an
=(
+1 2
)+(1 3
+(1 2
)2)+…+(1 3
+(1 2
)n)1 3
=
+n 2
[1-(1 3
)n]1 3 1- 1 3
=
-n+1 2
.1 2×3n