问题
解答题
已知数列{an}的前n项和的公式是Sn=
(1)求证:{an}是等差数列,并求出它的首项和公差; (2)记bn=sinan•sinan+1•sinan+2,求出数列{an•bn}的前n项和Tn. |
答案
当n=1时,a1=S1= π 4
当n≥2时,an=Sn-Sn-1=
(2n2+n)-π 12
[2(n-1)2+(n-1)]=π 12
(4n-1)π 12
所以an=
(4n-1).an-a n-1=π 12
,所以{an}是等差数列,它的首项为π 3
和公差为π 4
;π 3
(2)b1=sina1•sina2•sina3=sin
sinπ 4
sin7π 12
=11π 12
×(-2 2
)×(cos1 2
-cos18π 12
)=4π 12 2 8
=bn bn-1
=sinan-2 sinan-1
=sin(an-1+π) sinan-1
=-1,数列{bn}是等比数列,首项为-sinan-1 sinan-1
,公比为-1.2 8
所以bn=
(-1)n-1,anbn=2 8
(-1)n-1(4n-1).
π2 96
错位相减法得Tn=
[1-(-1)n(4n+1)]
π2 192