问题
解答题
已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2•a3=45,a1+a4=14. (1)求数列{an}的通项公式; (2)令bn=
|
答案
(Ⅰ)∵数列an}是等差数列,
∴a2•a3=45,a1+a4=a2+a3=14.
∴
或a2=3 a3=9
.a2=9 a3=5
∵公差d>0,
∴
,解得d=4,a1=1.a2=3 a3=9
∴an=1+4(n-1)=4n-3.
(Ⅱ)∵Sn=na1+
=2n2-n,n(n-1)d 2
∴bn=
=2n,2Sn 2n-1
∴f(n)=
=bn (n+25)•bn+1
=2n (n+25)⋅2(n+1)
=n n2+26n+5
≤1 n+
+2625 n
=1 26+2
•n25 n
=1 26+10
.1 36
当且仅当n=
,即n=5时,f(n)取得最大值25 n
.1 36