问题 解答题
已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)令bn=
2Sn
2n-1
,f(n)=
bn
(n+25)•bn+1
(n∈N*),求f(n)的最大值.
答案

(Ⅰ)∵数列an}是等差数列,

∴a2•a3=45,a1+a4=a2+a3=14.

a2=3
a3=9
a2=9
a3=5

∵公差d>0,

a2=3
a3=9
,解得d=4,a1=1.

∴an=1+4(n-1)=4n-3.

(Ⅱ)∵Sn=na1+

n(n-1)d
2
=2n2-n,

bn=

2Sn
2n-1
=2n,

∴f(n)=

bn
(n+25)•bn+1
=
2n
(n+25)⋅2(n+1)
=
n
n2+26n+5
=
1
n+
25
n
+26
1
26+2
25
n
•n
=
1
26+10
=
1
36

当且仅当n=

25
n
,即n=5时,f(n)取得最大值
1
36

选择题
单项选择题