问题 解答题

在数列{an}中,a1=-6×210,点(n,2a+1-an)在直线y=211x上,设bn=an+1-an+t,数列{bn}是等比数列.

(1)求出实数t;(2)令cn=|log2bn|,问从第几项开始,数列{cn}中连续20项之和为100?

答案

(1)由题设知2an+1=an+211n,从而an+1=

1
2
(an+211n)

当n>1时,

bn
bn-1
=
an+1-an+t
an-an-1+t
=
an-an-1+211+t
2(an-an-1+t)

若{bn}是等比数列,则211+2t=t,

故t=-211

(2)∵{bn}是以

1
2
为公比的等比数列,首项为a2-a1+t,

bn=(a2-a1-211)(

1
2
)n-1

a2=

1
2
(a1+211)=
1
2
(-6•210+211),a2-a1-211=211

bn=211(

1
2
)n-1=212-n

∴cn=|n-12|,

假设{cn}从第k项起连续20项之和为100,

当k≥12时,ck+ck+1+…+ck+19≥c12+c13+…+c31=190≥100不合题意,

当k<12时,ck+ck+1+…+ck+19=12-k+11-k+…+1+0+1+…+k+7=k2-5k+106=100

解得k=2或3,

所以数列{cn}从第二项或长三项起连续20项之和为100.

读图填空题
单项选择题 A1型题