问题
解答题
已知数列{an}的前n项和Sn=12n-n2 (Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列; (Ⅱ)若cn=12-an,求数列{
|
答案
解( I)当n≥2时,an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n,
当n=1时,a1=S1=12-1=11适合上式,
∴an=13-2n,
∴当n∈N*时,an+1-an=13-2(n+1)-(13-2n)=-2为定值,
∴数列{an}是等差数列;
( II)∵cn=12-an=12-(13-2n)=2n-1,n∈N*,
∴
=1 cn•cn+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
),1 2n+1
∴Sn=
[(1-1 2
)+(1 3
-1 3
)+…+(1 5
-1 2n-1
)]=1 2n+1
(1-1 2
)=1 2n+1
.n 2n+1