问题
选择题
数列
|
答案
由数列可知数列的通项公式an=
=1 1+2+…+(n+1)
=1 (n+1)(n+2) 2
=2(2 (n+1)(n+2)
-1 n+1
),1 n+2
∴数列的前n项和S=2(
-1 2
+1 3
-1 3
+…+1 4
-1 n+1
)=2(1 n+2
-1 2
)=1 n+2
,n n+2
故选:C.
数列
|
由数列可知数列的通项公式an=
=1 1+2+…+(n+1)
=1 (n+1)(n+2) 2
=2(2 (n+1)(n+2)
-1 n+1
),1 n+2
∴数列的前n项和S=2(
-1 2
+1 3
-1 3
+…+1 4
-1 n+1
)=2(1 n+2
-1 2
)=1 n+2
,n n+2
故选:C.