问题
解答题
(理科)已知数列{an}的前n项和Sn满足Sn=
(1)求数列{an}的通项公式; (2)记bn=
(3)在满足(2)的条件下,记Cn=
|
答案
(1)由(a-1)Sn=aan-a ①
当n≥2时,(a-1)Sn-1=aan-1-a ②
由①-②得n≥2时,(a-1)an=aan-aan-1即an=aan-1
又a1=a≠0
∴数列{an}是以a为首项,a为公比的等比数列
∴an=an
(2)bn=
+1=2Sn an
(2a 1-a
)n+1 a 3a-1 a-1
b1=3,b2=
,b3=3a+2 a 3a2+2a+2 a2
又b22=b1•b3得(3a+2)2=3(3a2+2a+2)解得a=1 3
又a=
时,bn=3n显然为等比数列1 3
故a=1 3
(3)由(2)得Cn=
+3n 3n+1
=2-3n+1 3n+1-1 2(3n-1) (3n+1-1)(3n+1)
又
<2(3n-1) (3n+1-1)(3n+1)
=2(3n-1) (3n+1-3)(3n+1)
<2 3 3n+1 2 3 3n
∴n i=1
<2(3i-1) (3i+1-1)(3i+1) n i=1
=2 3 3i
<
×2 3
(1-1 3
)1 3n 1- 1 3 1 3
∴Tn>2n-1 3