问题 解答题
(理科)已知数列{an}的前n项和Sn满足Sn=
a
a-1
(an-1)(a为常数且a≠0,a≠1,n∈N*)

(1)求数列{an}的通项公式;
(2)记bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值;
(3)在满足(2)的条件下,记Cn=
1
1+an
+
1
1-an+1
,设数列{Cn}的前n项和为Tn,求证:Tn>2n-
1
3
答案

(1)由(a-1)Sn=aan-a ①

当n≥2时,(a-1)Sn-1=aan-1-a ②

由①-②得n≥2时,(a-1)an=aan-aan-1即an=aan-1

又a1=a≠0

∴数列{an}是以a为首项,a为公比的等比数列

∴an=an

(2)bn=

2Sn
an
+1=
2a
1-a
(
1
a
)
n
+
3a-1
a-1

b1=3,b2=

3a+2
a
b3=
3a2+2a+2
a2

又b22=b1•b3得(3a+2)2=3(3a2+2a+2)解得a=

1
3

a=

1
3
时,bn=3n显然为等比数列

a=

1
3

(3)由(2)得Cn=

3n
3n+1
+
3n+1
3n+1-1
=2-
2(3n-1)
(3n+1-1)(3n+1)

2(3n-1)
(3n+1-1)(3n+1)
2(3n-1)
(3n+1-3)(3n+1)
=
2
3
3n+1
2
3
3n

n
i=1
2(3i-1)
(3i+1-1)(3i+1)
n
i=1
2
3
3i
=
2
3
×
1
3
(1-
1
3n
)
1-
1
3
1
3

Tn>2n-

1
3

单项选择题
问答题