问题
解答题
在数列{an}中,a1=1,且对于任意自然数n,都有an+1=an+n,求a100.
答案
∵an+1=an+n,∴an+1-an=n,
∴an=a1+(a2-a1)+…+(an-an-1)=1+1+2+…+(n-1)=1+n(n-1) 2
∴a100=1+
=4951.100×99 2
在数列{an}中,a1=1,且对于任意自然数n,都有an+1=an+n,求a100.
∵an+1=an+n,∴an+1-an=n,
∴an=a1+(a2-a1)+…+(an-an-1)=1+1+2+…+(n-1)=1+n(n-1) 2
∴a100=1+
=4951.100×99 2