问题
解答题
设等差数列{an}的前n项和为Sn,已知a3=9,S6=66. (1)求数列{an}的通项公式an及前n项的和Sn; (2)设数列{
|
答案
(1)设等差数列{an}的公差为d,
由题意可得
,a3=a1+2d=9 S6=6a1+
d=666×5 2
解之可得a1=1,d=4,故an=1+4(n-1)=4n-3,
所以Sn=
=n(a1+an) 2
=2n2-n;n(1+4n-3) 2
(2)由(1)可知
=1 anan+1
=1 (4n-3)(4n-1)
(1 4
-1 4n-3
),1 4n+1
故Tn=
[(1-1 4
)+(1 5
-1 5
)+…+(1 9
-1 4n-3
)]1 4n+1
=
(1-1 4
)=1 4n+1
<n 4n+1
=n 4n
,命题得证.1 4