问题 解答题
设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.
(1)求数列{an}的通项公式an及前n项的和Sn
(2)设数列{
1
anan+1
}
的前n项和为Tn,证明:Tn
1
4
答案

(1)设等差数列{an}的公差为d,

由题意可得

a3=a1+2d=9
S6=6a1+
6×5
2
d=66

解之可得a1=1,d=4,故an=1+4(n-1)=4n-3,

所以Sn=

n(a1+an)
2
=
n(1+4n-3)
2
=2n2-n;

(2)由(1)可知

1
anan+1
=
1
(4n-3)(4n-1)
=
1
4
1
4n-3
-
1
4n+1
),

故Tn=

1
4
[(1-
1
5
)+(
1
5
-
1
9
)+…+(
1
4n-3
-
1
4n+1
)]

=

1
4
(1-
1
4n+1
)=
n
4n+1
n
4n
=
1
4
,命题得证.

单项选择题
判断题