问题
解答题
在等比数列{an}中,已知a2=2,a3=4.
(1)求数列{an}的通项an;
(2)设bn=an+1,求数列{bn}的前n项和Tn.
答案
(1)由a2=2,a3=4,得q=
=2,∴a1=a3 a2
=1,从而an=2n-1.a2 q
(2)∵bn=an+1=2n-1+1,
∴Tn=
+n=2n-1+n.1-2n 1-2
在等比数列{an}中,已知a2=2,a3=4.
(1)求数列{an}的通项an;
(2)设bn=an+1,求数列{bn}的前n项和Tn.
(1)由a2=2,a3=4,得q=
=2,∴a1=a3 a2
=1,从而an=2n-1.a2 q
(2)∵bn=an+1=2n-1+1,
∴Tn=
+n=2n-1+n.1-2n 1-2