问题
解答题
两个重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车.已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
答案
(1)设每日来回y次,每次挂x节车厢,由题意y=kx+b…(1分)
由已知可得方程组:
…(2分)4k+b=16 7k+b=10
解得:k=-2,b=24…(3分)
∴y=-2x+24
(x>0,x∈N*)…(4分)
(2)设每日火车来回y次,每次挂x节车厢,设每日可营运S节车厢.
由题意知,每日挂车厢最多时,营运人数最多,则S=xy=x(-2x+24)=-2x2+24x=-2(x-6)2+72…(6分)
所以当x=6时,Smax=72(节) …(7分)
此时y=12,故每日最多运营人数为110×72=7920(人)
答:这列火车每天来回12次,才能使运营人数最多,每天最多运营人数为7920人.…(8分)