问题 解答题
已知数列{an}是由正数组成的等比数列,Sn是其前n项和.
(1)当首项a1=2,公比q=
1
2
时,对任意的正整数k都有
Sk+1-c
Sk-c
<2
(0<c<2)成立,求c的取值范围;
(2)判断SnSn+2-
S2n+1
(n∈N*)
的符号,并加以证明;
(3)是否存在正常数m及自然数n,使得lg(Sn-m)+lg(Sn+2-m)=2lg(Sn+1-m)成立?若存在,请求出相应的m,n;若不存在,说明理由.
答案

(1)∵数列{an}的首项a1=2,公比q=

1
2
,∴Sk=
2(1-
1
2k
)
1-
1
2
=4(1-
1
2k
)
≥2,

而0<c<2,对任意的正整数k都有

Sk+1-c
Sk-c
<2成立,∴Sk+1-c<2Sk-2c,化为c<2Sk-Sk+1

把Sk,Sk+1代入计算得c<4-

6
2k

先研究函数g(x)=4-

6
2x
的单调性,x∈(0,+∞).

∵y=2x在x∈(0,+∞)上单调递增,∴函数y=

6
2x
在x∈(0,+∞)上单调递减,

∴函数y=-

6
2x
+4在x∈(0,+∞)上单调递增.

即g(k)=4-

6
2k
关于k单调递增,又对任意的k恒成立,∴当k=1时g(k)取得最小值,∴0<c<4-
6
21
=1,即0<c<1.

(2)符号为负.

证明:当q=1时,SnSn+2-

S2n+1
=na1•(n+2)a1-[(n+1)a1]2=-
a21
<0,

当q≠1时,∵{an}是由正数组成的数列,∴q>0.

当q>0时且q≠1时,SnSn+2-

S2n+1
=
a1(1-qn)
1-q
a1(1-qn+2)
1-q
-[
a1(1-qn+1)
1-q
]2

=

a21
(1-q)2
[(1-qn)(1-qn+2)-(1-qn+12]

=

a21
(1-q)2
(-qn-qn+2+2qn+1)

=-qn

a21
<0.

综上可知:SnSn+2-

S2n+1
为负.

(3)假设存在一个正常数m满足题意,则有

Sn-m>0
Sn+1-m>0
Sn+2-m>0
(Sn-m)(Sn+2-m)=(Sn+1-m)2

SnSn+2-

S2n+1
=m(Sn+Sn+2-2Sn+1)(*),

∵Sn+Sn+2-2Sn+1=(Sn-m)+(Sn+2-m)-2(Sn+1-m)≥2

(Sn-m)(Sn+2-m)
-2(Sn+1-m)=0,

∴Sn+Sn+2-2Sn+1≥0,

∴m(Sn+Sn+2-2Sn+1)≥0,

由(1)得SnSn+2-

S2n+1
<0.

∴(*)式不成立.

故不存在正常数m使结论成立.

单项选择题
单项选择题