问题
解答题
已知某企业的原有产品每年投入x万元,可获得的年利润表示为函数:P(x)=-
(1)为了解决资金缺口,第一年初向银行贷款1000万元,年利率为5.5%(不计复利),第五年底一次性向银行偿还本息共计多少万元? (2)从新产品投入生产的第三年开始,从100万元的生产准备金中,新旧两种产品各应投入多少万元,才能使后三年的年利润最大? (3)从新旧产品的五年最高总利润中拿出70%来,能否还清对银行的欠款? |
答案
(1)1000+1000×5.5%×5=1275(万元)--(5分)
(2)设从第三年起每年旧产品投入x万元,新产品投入100-x万元,--(7分)
则每年的年利润y=P(x)+Q(100-x)=[-
(x-30)2+20]+[-1 10
(100-100+x)2+48(100-100+x)]9 10
=-(x-27)2+659.--(10分)
所以投入旧产品27万元,投入新产品73万元时,每年可获最大利润659万元.--(12分)
(3)因为P(x)在(0,30)上为增函数,
所以前两年利润为y1=2P(20)=20(万元)
后三年利润y2=3[P(27)+Q(73)]=3×659=1977(万元)--(15分)
由(20+1977)×70%=1397.9>1275,故能还清对银行的欠款.--(17分)