已知等比数列{an}的前n项和为Sn=2•3n+k(k∈R,n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足an=4(5+k)anbn,Tn为数列{bn}的前n项和,试比较3-16Tn与 4(n+1)bn+1的大小,并证明你的结论.
(Ⅰ)由Sn=2-3n+k可得
n≥2 时,an=Sn-Sn-1=4×3n-1
∵{an}是等比数列
∴a1=S1=6+k=4∴k=-2,an=4×3n-1
(Ⅱ)由an=4×(5+k)anbn和an=4×3n-1得bn=
(6分)n-1 4•3n-1
Tn=b1+b2+…+bn
=
+1 4•3
+…+2 4•32
+n-2 4•3n-2 n-1 4•3n-1
3Tn=
+1 4
+2 4•3
+…+3 4•32 n-1 4•3n-2
两式相减可得,2Tn=
+1 4
+1 4•3
+…+1 4•32
-1 4•3n-2 n-1 4•3n-1
Tn=
+1 8
+1 8•3
+…+1 8•32
-1 8•3n-2 n-1 8•3n-1
=
-3 16 2n+1 16•3n-1
4(n+1)bn+1-(3-16Tn)=
-n(n+1) 3n
=2n+1 3n-1 n(n+1)-3(2n+1) 3n
而n(n+1)-3(2n+1)=n2-5n-3
当n>
或n<5+ 37 2
<0时,有n(n+1)>3(2n+1)5- 37 2
所以当n>5时有3-16Tn<4(n+1)bn+1
那么同理可得:当
<n<5- 37 2 5+ 37 2
时有n(n+1)<3(2n+1),所以当1≤n≤5时有3-16Tn>4(n+1)bn+1
综上:当n>5时有3-16Tn<4(n+1)bn+1;
当1≤n≤5时有3-16Tn>4(n+1)bn+1