问题 解答题
已知等差数列{an}的前n项和为Sn,且a2=1,S11=33.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(
1
4
)an
,求数列{bn}的前n项和Tn
答案

(Ⅰ)设数列{bn}的公差为d,依题意,得

a1+d=1

11a1+11×5d=33

解得a1=

1
2
,d=
1
2

an=a1+(n-1)d=

n
2

(Ⅱ)bn=(

1
4
)an=(
1
2
)n

bn+1÷bn=

1
2
,故此数列为以
1
2
为首项和公比的等比数列

Tn=

1
2
[1-(
1
2
)
n
]
1-
1
2
=1-(
1
2
)n,n∈N+

填空题
填空题