问题
解答题
已知等差数列{an}的前n项和为Sn,且a2=1,S11=33. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=(
|
答案
(Ⅰ)设数列{bn}的公差为d,依题意,得
a1+d=1
11a1+11×5d=33
解得a1=
,d=1 2
,1 2
故an=a1+(n-1)d=
.n 2
(Ⅱ)bn=(
)an=(1 4
)n,1 2
因bn+1÷bn=
,故此数列为以1 2
为首项和公比的等比数列1 2
∴Tn=
=1-(
[1-(1 2
)n]1 2 1- 1 2
)n,n∈N+1 2